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The effects of mass transfer (e.g. via evaporation) of surface-active solutes on the
hydrodynamic stability of capillary liquid jets are studied. A linear temporal stability
analysis is carried out yielding evolution equations for systems satisfying general non-
linear kinetic adsorption relations and accompanying surface constitutive equations.
The discussion of the instability mechanism associated with the Marangoni effect clar-
ifies that solute transfer into the jet is destabilizing whereas transfer in the opposite
direction reduces instability. The general analysis is illustrated by a system satisfying
Langmuir-type kinetic relations. Contrary to a clean system (i.e. in the absence of
surfactants), reduced jet viscosity may lead to a substantial reduction in perturbation
growth. Furthermore, the Marangoni effect gives rise to an overstability mechanism
whereby perturbations whose dimensionless wavenumbers exceed unity grow with
time through oscillations of increasing amplitude. The common diffusion-control ap-
proximation constitutes an upper bound which substantially overestimates the actual
growth of perturbations. Considering solutes belonging to the homologous series of
normal alcohols in water–air systems, the intermediate cases (e.g. hexanol–water–air
which is ‘mixed-control’) are the most susceptible to Marangoni instability.

1. Introduction
Stability and breakup of capillary jets are important in a wide variety of engineering

applications (e.g. fuel injection, ink-jet printing, fibre spinning, etc.). Consequently, this
problem has been extensively investigated. The numerous extensions of the pioneering
analysis of Rayleigh (1878) include the incorporation of such additional effects as
the jet viscosity, dynamics of the surrounding medium, non-Newtonian rheology, and
non-uniformity of material properties (‘compound’ jets); the analysis of spatial (as
opposed to temporal) convective and absolute stability, the study of the occurrence
of satellite droplets and the recent modelling of the breakup phase by means of
appropriate singular similarity solutions.

We here focus on the effect on jet stability of the transfer of adsorbing solutes across
the jet surface. The presence of such solutes, which is often inevitable in engineering
systems, modifies the local dynamic properties of the jet surface (e.g. reducing the
surface tension). Non-uniformity of the surface adsorbed concentration results in
surface tractions acting to induce bulk fluid motions which, in turn, may further
enhance the surface concentration non-uniformity. The main goal of the present
contribution is to clarify the influence of solute mass transfer on this Marangoni
effect.
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In the absence of solute mass transfer between the jet and its surrounding atmo-
sphere Anshus (1973) found that the presence of surfactants had only a relatively
minor stabilizing effect. However, abundant empirical evidence (cf. Skelland & Walker
1989, as well as references therein) indicates that solute mass transfer substantially
affects jet stability, which motivates the present analysis.

Berg and coworkers (Burkholder & Berg 1974; Coyle, Berg & Niwa 1981) have
addressed this problem. Their analysis, however, made use of the ad hoc assump-
tion that the reference state could be characterized by a uniform and steady
radial gradient of solute concentration. Tarr & Berg (1980) attempted to refine
the model by assuming a steady boundary-layer-like reference distribution consist-
ing of a linear variation in an annular domain adjacent to the jet surface and a
constant concentration within the core. None of these distributions corresponds to
a state of equilibrium between the jet and the ambient medium. They are therefore
inconsistent with the steadiness assumption underlying these stability analyses. (In-
deed, actual reference distributions are highly transient and nonlinear, see figure 1.)
Thus, obvious difficulties arise in attempting to estimate the parameters incorporat-
ing the assumed constant gradient, which render questionable comparison of results
of the above analyses with experimental data pertaining to any specific physical
case.

No such ad hoc assumptions are made in the present contribution. Thus, rather
than postulating a reference state, we first calculate (essentially following MacLeod
& Radke 1994) the evolution of the reference concentration distribution. Stability
of the resulting inherently unsteady reference state is subsequently analysed via the
formulation and solution of an appropriate initial-value problem for the evolution
of perturbations (rather than the standard eigenvalue problem). Use of this method
has previously been made in the stability analysis of unsteady flows† associated with
growing or collapsing bubbles (Prosperetti 1977) and elongating capillary jets (Frankel
& Weihs 1987). Moreover, the entire analysis leading to the evolution equations applies
to arbitrary nonlinear material laws and is not restricted to the commonly assumed
equilibrium adsorption (which, in fact, is inadequate for the present problem, see
§ 5).

The rest of this contribution is organized as follows: In the next section we
formulate and solve the problem for the reference-state concentration distribution.
Subsequently, in § 3 we obtain the linear equations governing the evolution of small
perturbations. In § 4 we discuss the various physical mechanisms at work, focusing on
the coupling between the jet-surface displacement and the surface-excess concentration
perturbation. Explicit results are presented for a system satisfying Langmuir-type
kinetic relations. In § 5 we further comment on the consequences of the initial
lack of equilibrium, the analogy between the present mechanism of instability and
surface-tension-induced cellular convection as well as the (in)applicability of the
diffusion-control approximation to the present problem. Finally, calculation of the
vorticity distribution and estimates of the kinetic parameters are outlined in the
Appendices.

† The initial-value approach has also been applied to the analysis of the stability of steady
capillary jets as well as a number of other genuinely time-independent problems (see Berger
1988, and references cited therein). Apparently, the standard normal-mode method could (at least
formally) be applied to these steady problems. However, the occurrence of continuous eigenvalue
spectra makes the use of the initial-value approach essential in obtaining system response at
physically relevant times.
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2. Evolution of the reference state
The reference state of the present problem is characterized in terms of C (0)(r, t),

the bulk concentration distribution within the jet, Γ (0)(t), the surface-excess concen-
tration and C (0)

s (t), the bulk solute concentration at the outer surface of the jet (i.e.
within the surrounding atmosphere). While the problem governing the evolution of
these concentrations could in principle be formulated and solved for arbitrary initial
conditions, it seems most plausible to assume that, for a liquid jet issuing from an
orifice, the bulk concentrations within both phases are initially uniform whereas the
‘freshly formed’ free surface is initially clean, i.e.

C (0)(r, 0) = C0, C (0)
s (0) = C∞, Γ (0)(0) = 0. (2.1a–c)

Obviously, these represent a non-equilibrium initial state. Adopting a frame of ref-
erence moving with the presumed uniform axial liquid velocity, C (0)(r, t) satisfies the
diffusion equation

∂C (0)

∂t
= D

(
∂2C (0)

∂r2
+

1

r

∂C (0)

∂r

)
for 0 < r < a (2.2)

together with the boundary condition

∂C (0)

∂r
= 0 at r = 0. (2.3)

Evolution of C (0)(r, t), C (0)
s (t) and Γ (0)(t) is coupled through the surface mass balance

dΓ (0)

dt
= −D∂C

(0)

∂r
− E(C (0)

s − C∞) at r = a (2.4)

supplemented by the kinetic relations

Φl(C
(0), Γ (0)) = −D∂C

(0)

∂r
at r = a (2.5a)

and

Φg(C
(0)
s , Γ

(0)) = −E(C (0)
s − C∞) at r = a. (2.5b)

In the above D denotes solute diffusivity and a is the radius of the unperturbed
jet. The surface mass balance (2.4) equates the rate of adsorption to the difference
between the diffusive flux towards the jet surface and the rate of mass transfer to
the surrounding atmosphere. The latter flux is represented in the usual manner (cf.
Hansen 1960; Crank 1975) by the radiation-type term characterized by the (presumed
constant) mass-transfer rate coefficient E. In (2.5) Φl and Φg express the respective
kinetic rates of adsorption from each phase in terms of instantaneous values of the
surface-excess and appropriate subsurface concentrations. Explicit functional forms
will be specified later on (cf. (4.1)).

We normalize the radial coordinate by the jet radius a, the bulk concentrations by
the sum C = C0 +C∞ of the initial concentrations, the surface-excess concentration by
the saturation value Γm and the kinetic rate expressions Φl and Φg by CKl and CKg ,
respectively, wherein Kl and Kg are rate constants having the dimensions of length
per unit time. With a view to subsequent stability analysis we choose to describe the
evolution of the reference state on the capillary time scale Tc = (ρa3/σ0)

1/2 in which ρ
is the jet density and σ0 is the value of the surface-tension coefficient corresponding to
a clean surface. Since only dimensionless variables appear in the following we retain
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for these new variables the same notation originally introduced for their dimensional
counterparts.

Applying the foregoing normalization we obtain from (2.2) a dimensionless diffusion
equation whose right-hand side is multiplied by the parameter

ε =
DTc

a2
. (2.6)

For typical values (cf. Appendix B) ε ≈ 10−6. Subsequent analysis is facilitated by
assuming that is ε asymptotically small. The ‘outer’ limit ε → 0 when 1 − r ∼ O(1)
yields† C (0)(r, t) = C0 which satisfies the dimensionless counterparts of (2.1a), (2.2)
and (2.3) but cannot, in general, satisfy the boundary conditions (2.4) and (2.5) on
the jet surface. We thus consider the ‘inner’ limit in terms of the variable x defined by

1− r = ε1/2x. (2.7)

To leading order in ε (2.1)–(2.5) yield in this limit

∂C (0)

∂t
=
∂2C (0)

∂x2
for 0 < x < ∞, (2.8)

dΓ (0)

dt
=

(DTc)
1/2C

Γm

∂C (0)

∂x
+
ETcC

Γm
(C∞ − C (0)

s ) at x = 0, (2.9)

Φl(C
(0), Γ (0)) = δl

∂C (0)

∂x
at x = 0, (2.10a)

Φg(C
(0)
s , Γ

(0)) = δg(C∞ − C (0)
s ) at x = 0, (2.10b)

C (0)(x, 0) = C0, C (0)
s (0) = C∞, Γ (0)(0) = 0, (2.11a–c)

and the matching condition

C (0)(x, t) = C0 for x→∞. (2.12)

In (2.10) δl = (D/Tc)
1/2/Kl and δg = E/Kg . As such these parameters effectively

represent the ratio of the time scales respectively characterizing the kinetic and
diffusive stages of the adsorption process. (Thus δ → 0,∞ respectively correspond to
the ‘diffusion-control’ and ‘kinetic-control’ limits of this process.)

Following the standard approach (cf. Borwankar & Wasan 1983) we formally
replace (2.10a) by the boundary condition

C (0)(x, t) = C (0)(0, t) at x = 0. (2.13)

This enables separation of the above initial- and boundary-value problem into a linear
problem governing C (0)(x, t) and a nonlinear problem for the evolution of C (0)(0, t) and
Γ (0)(t). The former, consisting of (2.8), (2.11a), (2.12) and (2.13), allows the expression
of C (0)(x, t) in terms of (the as yet unknown) C (0)(0, t) yielding

C (0)(x, t) = C0 +

∫ t

0

∂C (0)(0, τ)

∂τ
erfc

[
x

2(t− τ)1/2

]
dτ, (2.14a)

(
∂C (0)

∂x

)
x=0

= − 1

π1/2

∫ t

0

∂C (0)(0, τ)

∂τ
(t− τ)−1/2 dτ. (2.14b)

† In accordance with the above, C0 and C∞ both hereafter denote dimensionless concentrations
appropriately normalized by C . Thus, for instance, in the problem of an initially clean jet to be
considered later on (cf. figure 1 and § 4.1) C0 = 0 and C∞ = 1.
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Figure 1. Evolution of the reference state for an initially clean jet for δl = 3.25, δg = 0.085,

βlC = 1.2 × 10−2, βgC = 13.2, (DTc)
1/2C/Γm = 1.6 × 10−2 and ETcC/Γm = 0.45. (a) Γ (0)(t), the

surface-excess concentration, (b) C (0)(0, t), the subsurface concentration and (c) C (0)(x, t), the bulk
concentration distribution at the indicated instants of time.

Substituting the last expression in the respective right-hand sides of (2.9) and (2.10a)
we obtain

Φl(C
(0), Γ (0)) = − δl

π1/2

∫ t

0

∂C (0)(0, τ)

∂τ
(t− τ)−1/2 dτ (2.15)

and

dΓ (0)

dt
= − (DTc)

1/2C

π1/2Γm

∫ t

0

∂C (0)(0, τ)

∂τ
(t− τ)−1/2 dτ+

ETcC

Γm
(C∞ − C (0)

s ), (2.16)

which, together with (2.10b) and the initial conditions (2.11), serve to determine Γ (0)(t),
C (0)
s (t) and C (0)(0, t) and thereby (via (2.14a)) C (0)(x, t) as well.
Figure 1 illustrates the evolution of the reference state whose stability is discussed

in § 4. Thus parts (a) and (b) of this figure depict the time variation of Γ (0)(t) and
C (0)(0, t), respectively, and part (c) presents C (0)(x, t) at the indicated instants. These
correspond to an initially clean jet (C∞ = 1 and C0 = 0 in (2.11)) when adsorption
is governed by the Langmuir-type relations (4.1) characterized by the dimensionless
kinetic parameters δl = 3.25, δg = 0.085, βlC = 1.2× 10−2 and βgC = 13.2. The mass

transfer rates within each bulk phase respectively correspond to (DTc)
1/2C/Γm =

1.6× 10−2 and ETcC/Γm = 0.45.
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In figure 1(a) we observe that initially Γ (0) rises rapidly. At t ≈ 4 it nearly reaches
75% of its steady-state equilibrium value marked by the horizontal dash–dotted
asymptote. (At the same time, t ≈ 4, the subsurface concentration, C (0)(0, t), presented
in part (b), is less than 3% of its equilibrium value.) Subsequently, Γ (0) continues to
rise slowly at a decreasing rate. It seems that at the early stages of the process the
larger part of the solute flux from the surrounding atmosphere adsorbs to the freshly
formed jet surface. Following this, when Γ (0) has increased sufficiently, the adsorption
rate from the gas phase and desorption rate to the liquid side are nearly balanced.
The latter desorption results in gradual increase of the subsurface concentration
C (0)(0, t) and consequently, via bulk diffusion, of C (0)(x, t) as well (figure 1c). Owing
to kinetic barriers and weak diffusion, relaxation of both is slow and, at t = 10, is still
far from completion. Thus, contrary to the postulate put forward by Burkholder &
Berg (1974), the boundary-layer-type reference-state distribution C (0)(x, t) is evidently
both nonlinear and unsteady. Finally, we note that, once Γ (0)(t) becomes slowly
varying and throughout the rest of the time interval presented, C (0)(0, t) is nearly
proportional to t1/2 and the substrate gradient (∂C (0)/∂x)x=0 varies only moderately.
Both of these observations are related to the slow variation of Γ (0)(t) through solute
mass balance at the jet surface. When Γ (0)(t) is slowly varying then, by (2.10b), so
is C (0)

s (t). Consequently, from (2.9), solute fluxes within both bulk phases are slowly
varying as well. Thus, since the diffusive boundary layer grows approximately as ∼ t1/2,
the moderately changing (∂C (0)/∂x)x=0 is consistent with the observed variation of
C (0)(0, t).

3. Evolution of perturbations
We assume that the surface of the jet

r = 1 + η(t) cos kz (3.1)

is perturbed by a small (η � 1) axisymmetric harmonic perturbation whose dimen-
sionless wavenumber is k. Accordingly, all field variables are generically represented
by

H(r, z, t) = H (0)(r, t) + h(r, t)

{
cos kz
sin kz

}
,

in which H (0) corresponds to the reference state and the dimensionless perturbation
amplitudes are presumed small (h� H (0)). We wish to obtain the evolution equation
governing η(t). To this end we start by formulating and analysing the dynamic
perturbation problem.

3.1. The dynamic perturbation problem

The radial and axial components (u, w) of the velocity perturbation amplitude and p,
the pressure perturbation amplitude, satisfy the continuity equation

∂u

∂r
+
u

r
+ kw = 0 (3.2)

and the linearized Navier–Stokes equations (for an otherwise quiescent jet)

∂u

∂t
= −∂p

∂r
+ S

(
∂2u

∂r2
+

1

r

∂u

∂r
− u

r2
− k2u

)
(3.3)
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and

∂w

∂t
= kp+ S

(
∂2w

∂r2
+

1

r

∂w

∂r
− k2w

)
, (3.4)

in which

S =
µ

(ρaσ0)1/2
,

where µ is the jet-liquid viscosity. As such S represents the ratio of the capillary
(Tc) and viscous (ρa2/µ) time scales. The above equations are supplemented by the
(linearized) boundary conditions

u =
dη

dt
at r = 1, (3.5)

u,
∂w

∂r
= 0 at r = 0, (3.6)

p− S ∂u
∂r

= −σ(Γ (0)) (1− k2) η +

(
∂σ

∂Γ

)(0)

γ at r = 1, (3.7)

S

(
ku− ∂w

∂r

)
= k

(
∂σ

∂Γ

)(0)

γ at r = 1. (3.8)

In (3.7) and (3.8) we have omitted the terms involving µs and κs, the shear and
dilatational surface viscosities (while retaining bulk-viscosity terms). This is tanta-
mount to assuming that the Boussinesq number (µs + κs)/µa � 1, which is justified
(cf. Scriven & Sternling 1964) for a relatively clean surface of a 1 mm water jet. Fol-
lowing the standard practice (Borwankar & Wasan 1983; MacLeod & Radke 1994)
we postulate a general equilibrium surface equation of state which, for the presumed
isothermal surface, specifies the surface-tension coefficient as a function σ(Γ ) of the
instantaneous local surface-excess concentration. The perturbation amplitude of the
surface-excess concentration γ therefore appears on the respective right-hand sides of
the conditions (3.7) and (3.8) imposed upon the normal and shear stresses on the jet
surface. Owing to this Marangoni effect, the above dynamic problem for the pressure
and velocity perturbations is coupled to the transport problem considered in the next
subsection.

The amplitude ψ(r, t) of the Stokes stream function of the velocity perturbation
satisfies

∂2ψ

∂r2
− 1

r

∂ψ

∂r
− k2ψ = ζ, (3.9)

where ζ(r, t)/r is the amplitude of the vorticity perturbation which, from (3.3) and
(3.4), is governed by

∂ζ

∂t
= S

(
∂2ζ

∂r2
− 1

r

∂ζ

∂r
− k2ζ

)
, (3.10)

together with the boundary conditions

ζ(r, t),
∂ζ

∂r
(r, t) = 0 at r = 0, (3.11a, b)

ζ(r, t) = k

[
1

S

(
∂σ

∂Γ

)(0)

γ − 2
dη

dt

]
at r = 1 (3.12)
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by (3.5), (3.8) and the definition of ζ(r, t). The solution of (3.9) satisfying (3.5) and
(3.6) is

ψ(r, t) =
rI1(kr)

kI1

dη

dt
+ rI1(kr)

{
−
∫ 1

r

K1(kr1) ζ(r1, t) dr1

+
K1

I1

∫ 1

0

I1(kr1) ζ(r1, t) dr1 − K1(kr)

I1(kr)

∫ r

0

I1(kr1) ζ(r1, t) dr1

}
, (3.13)

wherein I1 and K1 respectively denote the modified Bessel functions of the first order
and first and second kind. Whenever the arguments are explicitly omitted I1 and K1

are functions of k. From (3.13) and (3.4) we obtain (after a rather tedious calculation)
p(r, t) which, when substituted in the normal-stress condition (3.7) leads to

d2η

dt2
+ 2S

(
2k2 − kI1

I0

)
dη

dt
+

(
kI1

I0

− k2

)(
∂σ

∂Γ

)(0)

γ

−kI1

I0

(1− k2) σ (Γ (0)) η = −2Sk2

I0

∫ 1

0

I1(kr) ζ(r, t) dr. (3.14)

In Appendix A we obtain ζ(r, t), the ‘modified’ vorticity perturbation, which, in turn,
yields ∫ 1

0

I1(kr) ζ(r, t) dr = 2kI1

∞∑
n=1

α2
n

k2 + α2
n

×
∫ t

0

[(
∂σ

∂Γ

)(0)

γ(τ)− 2S
dη

dτ

]
exp[−S(k2 + α2

n)(t− τ)] dτ, (3.15)

wherein αn (n = 1, 2, . . .) are the positive zeros of J1. While (3.15) converges for all
S > 0, its convergence becomes dauntingly slow for S � 1, k ∼ O(1). In this limit we
obtain from the asymptotic calculation in Appendix A∫ 1

0

I1(kr) ζ(r, t) dr ∼ 2kI1S
1/2

∫ t

0

[
1

S

(
∂σ

∂Γ

)(0)

γ(τ)− 2
dη

dτ

]

×
[
π−1/2(t− τ)−1/2 − S1/2

(
kI1

I0

− 1

2

)
+ O(S)

]
dτ. (3.16)

As has been anticipated (cf. (3.7), (3.8) et seq.), the equation obtained for η(t), (3.14),
depends both explicitly and implicitly (through the vorticity distribution, cf. (3.15)
and (3.16)) on γ(t), the surface concentration perturbation. To close the system of
evolution equations we next address the perturbed solute transport.

3.2. The transport perturbation problem

Applying the same scaling as in the reference state we obtain (cf. Edwards, Brenner
& Wasan 1991) the linearized perturbation equations

∂c

∂t
+ u

∂C (0)

∂r
= ε

(
∂2c

∂r2
+

1

r

∂c

∂r
− k2c

)
for 0 < r < 1, (3.17)

∂c

∂r
= 0 at r = 0, (3.18)
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dγ

dt
+
(u
r

+ kw
)
Γ (0) = −DTcC

aΓm

∂c

∂r
− ETcC

Γm
cs at r = 1, (3.19)

(
∂Φl

∂C

)(0)

c+

(
∂Φl

∂Γ

)(0)

γ = −δl ε1/2 ∂c

∂r
at r = 1, (3.20a)

(
∂Φg

∂C

)(0)

cs +

(
∂Φg

∂Γ

)(0)

γ = −δgcs at r = 1, (3.20b)

together with appropriate initial conditions. In the above c and cs respectively denote
the perturbation amplitudes of the bulk concentration distribution within the jet
and the concentration at its outer surface. Surface diffusion would manifest itself
through the appearance on the right-hand side of (3.19) of the term −k2(Ds/D)εγ
omitted above, where Ds denotes the coefficient of surface diffusivity. Inspection of
the following asymptotic calculation reveals that the omitted term is too small to
affect the resulting evolution equations.

Since γ appearing in (3.14) depends (through the surface mass balance and adsorp-
tion relations) upon the bulk concentration and velocity perturbations in the vicinity
of the jet surface, we focus on the ‘inner’ limit of the transport problem. In terms
of the ‘inner’ variable x (cf. (2.7)), the transport equation governing c is (to leading
order in ε� 1)

∂c

∂t
− ε−1/2u(x, t)

∂C (0)

∂x
=
∂2c

∂x2
. (3.21)

The large O(ε−1/2) convection term appearing on the left-hand side originates from
the fact that C (0), the reference concentration distribution, varies on the O(ε1/2) scale
of the boundary layer. Thus, even the small O(η) radial perturbation velocity imposed
by the jet-surface displacement (3.5) is capable of creating a large radial solute flux.
The dominant balance (3.21) therefore suggests the expansion

c(x, t; ε) ∼ ε−1/2c0(x, t)[1 + O(ε1/2)]

(wherein c0 is presumed O(η)). The leading-order c0(x, t) is governed by

∂c0

∂t
− ∂2c0

∂x2
= u(x, t)

∂C (0)

∂x
. (3.22a)

This is supplemented by the boundary condition(
∂Φl

∂C

)(0)

c0 − δl ∂c0

∂x
+ ε1/2

(
∂Φl

∂Γ

)(0)

γ = 0 at x = 0, (3.22b)

and the homogeneous† initial and matching conditions

c0(x, 0) = 0, (3.22c)

c0(x, t) = 0 as x→∞. (3.22d)

Solution of the above problem is obtained by presenting c0(x, t) as the sum

c0 = c01 + c02, (3.23)

† There is no a priori reason to anticipate initial concentration perturbations larger than the
presumed O(η) velocity and pressure perturbations, see also (A 1) et seq. Additionally, the last term
is retained in (3.22b) despite the appearance of the ε1/2 factor. In certain cases the numerical value
of (∂Φl/∂Γ )(0) may be sufficiently large to make the contribution of this term non-negligible.
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wherein c01 satisfies (3.22a, c, d ) and c01(0, t) = 0 whereas c02 satisfies the homogeneous
equation associated with (3.22a) together with (3.22c, d ) and the condition resulting
from substitution of (3.23) into (3.22b).

For the first term in (3.23) we thus obtain

c01(x, t) =

∫ t

0

∫ ∞
0

G(x, t, x0, t0)u(x0, t0)
∂C (0)

∂x0

(x0, t0) dx0 dt0 (3.24a)

in which the appropriate Green’s function is

G(x, t, x0, t0) = 1
2
[π(t− t0)]−1/2

{
exp

[
− (x− x0)

2

4(t− t0)
]
− exp

[
− (x+ x0)

2

4(t− t0)
]}

(3.24b)

(for t > t0). Subsequent derivation may proceed via substitution of

u =
k

r
ψ =

I1(kr)

I1

dη

dt
+ kI1(kr)

{
−
∫ 1

r

K1(kr1)ζ(r1, t) dr1

+
K1

I1

∫ 1

0

I1(kr1)ζ(r1, t) dr1 − K1(kr)

I1(kr)

∫ r

0

I1(kr1)ζ(r1, t) dr1

}
(3.25)

(cf. (3.13)) together with ζ(r, t) (A 2). Considerable simplification of the resulting
evolution equation is however gained by recalling that, unlike the transport problem,
the dynamic problem is explicitly independent of ε. As such the latter problem
does not yield an O(ε1/2) boundary-layer solution. (Note, however, that an O(S1/2)
dynamic boundary layer does form near the jet surface in the limit S � 1, as may
be verified from (3.25) in conjunction with (A 5). However, since in all physically
relevant situations S � ε (cf. Appendix B), variations of u still take place on a scale
much larger than that of the above transport boundary layer. The approximation
(3.26) thus remains valid at S � 1 with the error estimate appropriately modified to
O(ε1/2/S1/2).) Transforming (3.25) to the inner variable x, we readily verify that

u(x, t) ∼ dη

dt
[1 + O(ε1/2)], (3.26)

in agreement with (3.5). Hence, to leading order

c01(x, t) =

∫ t

0

∫ ∞
0

G(x, t, x0, t0)
dη

dt0

∂C (0)

∂x0

(x0, t0) dx0 dt0. (3.27)

Similarly to the calculation of the reference state C (0)(x, t), we express (∂c02/∂x)x=0 in
terms of the yet unknown function c02(0, t) (cf. (2.14)). Substituting this and c01 into
(3.22b) we eventually obtain the evolution equation(

∂Φl

∂C

)(0)

c02(0, t) + ε1/2

(
∂Φl

∂Γ

)(0)

γ(t) +
δl

π1/2

∫ t

0

∂c02

∂τ
(0, τ)(t− τ)−1/2 dτ

= −δl
π

∫ t

0

dt1
dη

dt1
(t− t1)−1/2

∫ t1

0

dt2
∂C (0)

∂t2
(0, t2)

(t1 − t2)1/2

t− t2 . (3.28)

To obtain a closed set of evolution equations for η(t), γ(t) and c02(0, t) we need to
consider the surface mass balance (3.19) in conjunction with the dynamic perturbation
problem. Writing (3.19) in terms of the inner variable x, we obtain

dγ

dt
+
ETcC

Γm
cs = −

(u
r

+ kw
)
Γ (0) +

Ca

Γm

∂c0

∂x
at x = 0. (3.29)



Effects of solute mass transfer 105

Making use of (3.20b) to express cs in terms of γ, (3.13) to obtain u/r + kw at r = 1
and substituting these together with the expression for ∂c0/∂x at x = 0 obtained in
the course of deriving (3.28) (cf. (3.24) et seq.), we eventually arrive at

dγ

dt
− ETcC

Γm

(∂Φg/∂Γ )(0)

δg + (∂Φg/∂C)(0)
γ

=

[(
kI0

I1

− 1

)
dη

dt
+
k

I1

∫ 1

0

I1(kr)ζ(r, t) dr

]
Γ (0)

−Ca
Γm

{
1

π1/2

∫ t

0

∂c02

∂τ
(0, τ) (t− τ)−1/2 dτ

+
1

π

∫ t

0

dt1
dη

dt1
(t− t1)−1/2

∫ t1

0

dτ
∂C (0)

∂τ
(0, τ)

(t1 − τ)1/2

t− τ
}
. (3.30)

Equations (3.14), (3.28) and (3.30) supplemented by (3.15) or (3.16) constitute a system
of coupled Volterra-type integro-differential equations governing the evolution of η(t),
c02(0, t) and γ(t).

4. Results and discussion
The above equations involve the instantaneous values of η, γ, c02 and their time

derivatives as well as (explicitly and implicitly) their past evolution. The implicit
‘memory effect’ is associated with the integrations of the vorticity distribution ap-
pearing on the respective right-hand sides of (3.14) and (3.30). This effect originates
from the dependence of the vorticity source on the perturbed jet surface upon the
instantaneous values of dη/dt and γ, (3.12), together with the fact that (for all finite
values of S) the evolution of the bulk vorticity distribution through inwards diffusion
from the surface is not instantaneous (cf. Prosperetti 1977; Frankel & Weihs 1987).
The explicit convolution integrals appearing in both (3.28) and (3.30) reflect the effect
on solute diffusive flux perturbation of the evolution of the solute concentration
gradient in the unsteady reference state.

Our first objective is to identify the mechanism by which solute mass transfer
triggers the Marangoni instability in the present problem. While equations (3.14),
(3.15), (3.28) and (3.30) have been derived for arbitrary S , the values of S occurring
in actual applications are often relatively small (cf. Appendix B). The subsequent
discussion therefore focuses on these cases.

Consider to begin with (monotonical) divergence of perturbations. From (3.16) we
conclude that when S � 1 the evolution of η(t) is governed by the balance of the
third and fourth terms on the left-hand side of (3.14). (Numerical evidence indicates
that this is essentially correct throughout the entire domain of S values considered
here.) The latter term represents the standard Rayleigh effect (though with a variable
surface-tension coefficient owing to unsteadiness of the reference state) resulting
from perturbation of the jet surface curvature. As such, this term has a stabilizing
(restoring) or destabilizing effect according to whether k > 1 or k < 1, respectively.
The term linear in γ represents the Marangoni effect associated with non-uniformity
of the surface tension. This term combines contributions from both the last term on
the right-hand side of (3.7) and the pressure perturbation (proportional to kI1/I0 and
k2, respectively). Since kI0/I1 > 1 for all k > 0, the latter contribution dominates.
Thus, for surface-tension-reducing solutes (i.e. when (∂σ/∂Γ )(0) < 0), a surface-excess
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concentration perturbation γ whose sign is opposite to that of the surface displacement
(i.e. one increasing solute concentration at the troughs and decreasing it at the crests)
will give rise to a destabilizing Marangoni effect for all wavelengths.

The feasibility of such a persisting γ(t) is now examined by considering the various
contributions appearing in (3.29) or (3.30) (both representing solute mass balance at
the perturbed jet surface). Since for an arbitrary adsorption relation (∂Φ/∂Γ )(0) < 0
and (∂Φ/∂C)(0) > 0 (cf. Borwankar & Wasan 1983), the mass-transfer term on the left-
hand side of (3.30) is stabilizing. Evidently, a larger (dimensionless) mass-transfer rate
ETcC/Γm will tend to eliminate increasingly rapidly any concentration perturbation
occurring in the vicinity of the jet surface. However, as we shall presently see, solute
mass transfer may have a substantial (though indirect) destabilizing effect.

The first expression on the right-hand side of (3.30) represents the effect of surface
convection (cf. Edwards et al. 1991). This expression depends explicitly upon dη/dt
and implicitly, through the vorticity distribution (cf. (3.15)), upon both dη/dt and
γ. The contribution of the former is dominated by the explicit term which, in turn,
describes the rate of jet-surface contraction as a result of the irrotational flow corre-
sponding to the prescribed jet-surface perturbation. Thus, for instance, for dη/dt > 0
(and η > 0), the surface contracts at the crests and dilates at the troughs thereby
tending to induce γ > 0 contributing, as explained above, to a stabilizing Marangoni
effect in (3.14). Finally, the (implicit) dependence upon γ corresponds to surface con-
vection directly induced by non-uniform surface tension resulting from non-uniform
surface-excess concentration. For surface-tension-reducing agents this surface convec-
tion acts to eliminate γ and restore uniformity of adsorbed solute concentration. For
future reference we note that in the limit S → 0 (cf. (3.16)) this effect may become
O(S−1/2) large.

The sum of the two terms in the braces appearing on the right-hand side of
(3.30) explicitly represents the opposing contributions of c01 and c02 (cf. (3.23)) to
the diffusion term (the last on the right-hand side) of (3.29). This term together
with the Marangoni term in (3.14) form the main link coupling the evolution of
the jet-surface displacement and solute-concentration perturbation. As may readily
be seen from (3.24), for dη/dt > 0 (and η > 0), the sign of the second term in the
braces (which dominates the contribution of c02) is determined by ∂C (0)/∂x. In the
case of an initially clean jet in a contaminated atmosphere, solute mass transfer will
take place into the jet yielding ∂C (0)/∂x < 0 (cf. figure 1). The diffusion term will
then act to produce a surface-excess perturbation γ < 0 thereby giving rise to a
destabilizing Marangoni effect in (3.14). When the direction of solute mass flux in the
reference state is outwards (e.g. a contaminated jet discharging into an initially clean
atmosphere), the effect of diffusion will be stabilizing. The correction c02 originates
from the boundary condition (3.22b) which, in general, is not satisfied by c01 alone.
This correction gives rise to the penultimate term on the right-hand side of (3.30)
acting to diminish the magnitude of the perturbation diffusive flux.

Further physical insight into the present problem may be gained by considering
the source of the diffusion term in (3.29). The forcing term on the right-hand side of
(3.22a) indicates that the perturbation diffusive flux is generated via convection by
the radial velocity perturbation (induced, in turn, by displacement of the perturbed
jet surface) across the reference-state boundary-layer distribution. When ∂C (0)/∂x < 0
and dη/dt > 0 the radial convection acts to reduce the local bulk solute concentration
in the vicinity of the crests of the perturbed jet surface. Indeed, c01 < 0 for all x > 0
(cf. (3.24)). This (in conjunction with the vanishing of c01(0, t)) yields the substrate
gradient ∂c01/∂x < 0 and the accompanying diffusive flux. The latter acts to reduce the
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surface-excess concentration in the vicinity of the crests, i.e. generate the perturbation
γ < 0.

As mentioned above, the correction c02 originates from the condition (3.22b) which
imposes equality of the diffusive flux and adsorption rate on the liquid side of the jet
surface. From this balance it follows that both reduced desorption rate and occurrence
of inwards diffusive flux (respectively associated with γ < 0 and ∂c01/∂x < 0) result
in reduced subsurface concentration , i.e. c02(0, t) < 0. This, in turn, acts to diminish
the inwards diffusive flux. The corresponding contribution of c02 in (3.30) is thus the
present version of a ‘back diffusion’ term (cf. Eastoe & Dalton 2000).

The foregoing discussion supersedes in the context of the present well-posed initial-
value perturbation problem the somewhat incoherent rationalization previously ad-
vanced by Burkholder & Berg (1974). Finally, it is worthwhile to note that the above
is closely analogous to the mechanisms respectively proposed by Pearson (1958) and
Sternling & Scriven (1959) for surface-tension-induced cellular convection. We further
comment on this analogy in § 5.

4.1. An illustration: a Langmuir–Hinshelwood system

The effect of solute mass transfer on jet stability will now be illustrated for systems
satisfying Langmuir–Hinshelwood-type kinetic expressions

Φi(C,Γ ) = C(1− Γ )− Γ/βiC, i = l, g (4.1)

(which at equilibrium reduce to the Langmuir isotherm), together with the accompa-
nying surface equation of state

σ(Γ ) = 1 +M log(1− Γ ). (4.2)

These relatively simple nonlinear relations adequately describe the kinetics of aqueous
solutions of the lower-molecular-weight alcohols (which are both volatile and signifi-
cantly soluble). Appearing in the above are βl and βg representing the surface activity
of the solute (see Appendix B) as well as the Marangoni parameter M = RΘΓm/σ0

in which R denotes the universal gas constant and Θ is the absolute temperature.
Owing to the unsteadiness of the reference state, one needs to solve the initial-

value problem for the evolution of perturbations rather than the standard eigenvalue
problem for the growth rate. To this end (3.14), (3.28) and (3.30) have been integrated
numerically subject to the initial conditions η(0) = 1, η′(0) = 0, γ(0) = −1 and
c02(0, 0) = 0. Typical of unsteady flows is that their instability is not dominated at all
times by a single ‘fastest-growing’ perturbation. Rather, different wavenumbers assume
the lead at different times (cf. Frankel & Weihs 1987). The initial-value problem for
the evolution of perturbations has therefore been integrated for a large number of
dimensionless wavenumbers k. This enables the description of the time variation
of ηm(t), the growth of the instantaneously most amplified surface perturbations,
together with the values of the corresponding dimensionless wavenumbers km(t). We
focus on the case of an initially clean jet (C0 = 0 in (2.1a)) in which, according
to the above general discussion, solute mass transfer yields the most destabilizing
Marangoni effect. The solute mass transfer within both phases and the kinetics of
adsorption are characterized by the set of parameters previously mentioned in the
context of figure 1 together with Ca/Γm = 8.1.

Figure 2 describes the effect of S on the amplification of perturbations. We present
the variation with time of ηm and the corresponding km for M = 0.6 and the indicated
values of S . The dashed line in part (a) represents the most amplified mode in the
Rayleigh instability of a clean inviscid jet (characterized by the same capillary time
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Figure 2. Effect of S on the evolution of (a) ηm and (b) km of the instantaneously most amplified
perturbations for M = 0.6 and Ca/Γm = 8.1. All other parameters the same as in figure 1. Dashed
lines depict the corresponding most unstable Rayleigh mode.

scale Tc). The latter shows a substantially smaller perturbation growth than in all
other cases presented. This seems remarkable given that the Rayleigh case is free of
viscous damping. Furthermore, according to (4.2) and figure 1(a), in all other cases
the surface tension decreases with time (by more than 30% at t ≈ 4 and eventually
by nearly 70%). We therefore conclude that the main source of instability in the
present problem is the Marangoni mechanism associated with solute mass transfer
which more than compensates for the reduced Rayleigh instability.

Another interesting feature is that, unlike the comparable problem of a clean system
(i.e. in the absence of Marangoni effect), ηm here varies non-monotonically with S .
With decreasing S , ηm initially grows and then, below S = 0.1, the trend changes and
ηm decreases with further decrease of S . (For smaller values of M this trend reversal
appears at smaller values of S .) The former trend is associated with the expected
diminution of the damping term (second on the left-hand side) of (3.14), which is the
prevailing influence at relatively large values of S . Then, for small S (� 1, see (3.16)),
the expression

k2Γ (0)(t)

π1/2S1/2

∫ 1

0

(
∂σ

∂Γ

)(0)
γ(τ)

(t− τ)1/2
dτ (4.3)

emerges as the leading behaviour of the surface-convection term on the right-hand side
of (3.30). This causes the rapid attenuation of γ thereby eliminating the Marangoni
term (third on the left-hand side) of (3.14). The origin of this mechanism may be
traced back to (3.8). In the presence of surfactants the condition imposed upon
the shear stresses at the surface of the jet becomes singular in the limit S → 0.
This singularity reflects the fact that, in the absence of viscosity, the bulk fluid cannot
sustain the shear stresses created by the perturbations of surface-excess concentration.
The non-uniformity of surface tension then immediately eliminates the perturbation
of adsorbed solute concentration.

All curves presented in figure 2 (b) show that the corresponding values of km initially
decrease and then increase slowly, approaching respectively constant long-time limits.
These limits are considerably larger than Rayleigh’s value (0.697, marked by the
horizontal dashed line) corresponding to a clean inviscid jet. Furthermore, similarly
to the behaviour of ηm observed above, the variation of km with S is non-monotonical.
Thus, for S < 0.1, km decreases with S , i.e. contrary to a clean jet, reduced viscosity
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Figure 3. (a) Oscillatory amplifications of perturbations for the indicated k(>1) values. (b) Time
dependence of ------, Rayleigh term; - - -, Marangoni term; and —, η′(t) for k = 1.5. In both parts
M = 0.24, S = 0.003 and all other parameters the same as in figure 2.

results in increasing wavelength of the dominant perturbations. Both the magnitude
and mode of variation of km with S are related to the Marangoni effect. Thus, we note
that increasing k increases the magnitude of the coefficient of the Marangoni term in
(3.14). The values of km are therefore larger than those for clean jets of comparable
viscosity. For S � 1 the surface-convection term (4.3) which is proportional to k2

becomes dominant. Consequently, the values of km eventually decrease with S .
The constant limits of km and the nearly linear variation of log ηm at long times

correspond to approximately exponential long-time growth of perturbations which,
in turn, indicates that the transient problem has evolved into a quasi-steady one.
These trends are in agreement with the previously observed (cf. figure 1) slow long-
time variation of Γ (0) and (∂C (0)/∂x)x=0 in the reference state as well as the fading
(approximately as t−1/2) of the early-time contributions to the memory terms in the
above evolution equations.

Another interesting feature of the present problem is the occurrence of ampli-
fied oscillations. These are illustrated in figure 3(a) depicting η(t) for M = 0.24,
S = 0.003 and the indicated wavenumbers k > 1. (All other parameters remain
the same as in figure 2.) At k = 1, η(t) still grows monotonically as a result of a
destabilizing Marangoni effect. (The Rayleigh term is now absent from (3.14).) For
k = 1.2 and k = 1.5 perturbations grow through oscillations of increasing amplitude.
In the absence of Marangoni effect, the oscillatory perturbations pertaining to k > 1
are damped by viscous dissipation for all (however small) S > 0. It therefore seems
worthwhile to clarify the mechanism underlying the observed amplification. As argued
at the very beginning of this section, at the relatively small values of S considered
here, η(t) is essentially dominated by the balance of the Marangoni and Rayleigh
effects. The bold solid and dashed curves in figure 3(b) respectively present the time
variation of the Rayleigh and Marangoni terms of (3.14) for k = 1.5 and M, S the
same as in part (a) of the figure. The thin solid line is proportional to η′(t). Typical of
all k > 1 is that the amplitude of the restoring (linear in η) Rayleigh term exceeds that
of the Marangoni term, the time dependence being therefore oscillatory. However,
the latter term is nearly in phase with η′(t) which gives rise to a resonance interac-
tion: The Marangoni term in (3.14) enhances |dη/dt| which, in turn, augments the
destabilizing diffusion term in (3.30). An overstability mechanism (cf. Chandrasekhar
1961) is thereby generated. (For still larger values of k > 1, enhanced viscous damp-
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Figure 4. Evolution of η(t): —, actual (δl = 3.25); - - -, diffusion-control approximation (δl = 0) for
k = 0.8 and all other parameters the same as in figure 3.

ing will eventually prevail and diminish |dη/dt|. This, accompanied by the further
enhancement of the attenuating surface-convection term (4.3) in (3.30), will cause the
subsidence of both γ and η oscillations.)

Actual data regarding Kl , the kinetic rate constant, are generally lacking, which
makes it difficult to estimate the parameter δl . This difficulty is commonly avoided by
adopting the ‘diffusion-control’ limit δl → 0 (i.e. assuming infinitely fast kinetics). In
this limit, the diffusive flux terms vanish from (2.10) and (3.20) which thereby reduce to
the corresponding equilibrium relations, significantly simplifying the ensuing analysis.
We now turn to consider the effect on jet stability of the parameter δl . The discussion
will also serve to examine the adequacy in the present problem of the prevailing
diffusion-control approximation.

In the case of an initially clean jet, a reduced diffusion rate or increased kinetic
transfer rate are expected to result in increased subsurface concentration C (0)(0, t) (the
slow diffusion being incapable of transferring the solute released by desorption into
the bulk of the jet sufficiently rapidly). This, in turn, increases the gradient ∂C (0)/∂x
thereby enhancing the Marangoni instability. Consequently, the diffusion-control limit
provides an upper bound to the Marangoni instability whereas this type of instability
vanishes in the limit δl →∞ of kinetic (or transfer) control.

Figure 4 compares the actual evolution of η(t) (solid line, δl = 3.25) for k = 0.8
and all other parameters the same as in figure 3 to the evolution predicted by the
diffusion-control limit (dashed line, δl = 0). The value δl = 3.25 approximates the
data (cf. Appendix B) for the system hexanol–water–air which is ‘mixed-control’
(Joos & Serrien 1989; Chang & Franses 1995). The corresponding η(t) is indeed
much smaller than that predicted by the diffusion-control limit. In a homologous
solute series the adsorption rate constants increase with the length of the molecular
chain while the diffusivities moderately decrease. The value of δl thus decreases, which
apparently indicates an increasing Marangoni instability with increasing molecular
weight of solute. While this is true of aqueous solutions of the lower-molecular-
weight homologues, the rapidly diminishing solubility results in the vanishing of the
parameter Ca/Γm in (3.29) and (3.30). Thus, the diffusion term which constitutes
an essential link in the Marangoni instability associated with solute mass transfer



Effects of solute mass transfer 111

is eventually eliminated altogether. Indeed, the present mixed-control system for
which δl ≈ 3.25 (cf. Appendix B) is far more susceptible to Marangoni instability
than systems such as decanol–water–air for which (cf. MacLeod & Radke 1994)
δl ≈ 1.2× 10−2 despite the fact that the latter are much closer to the diffusion-control
limit.

5. Concluding remarks
The main thrust of the present contribution has been the relaxation of the ad hoc

steadiness assumption impairing previous analyses. The inherent unsteadiness of the
problem originates from the initial lack of equilibrium between the two bulk phases
as well as between each of them and the freshly formed jet surface. Thus, for instance,
despite the small solute diffusivity in the liquid phase, diffusion there is non-uniformly
weak and slow. Rather, within the boundary layer developing near the jet surface,
significant diffusive flux and concentration variations take place on the time scale
of perturbation evolution. The same is true of the surface-excess concentration (see
figure 1).

In this context Tarr & Berg (1980) reported substantial deviations of their results
from those of Burkholder & Berg (1974) unless the concentration boundary-layer
thickness exceeded about 1% of the jet radius. Comparison with figure 1(c) in
conjunction with the definition (2.7) of the inner variable reveals that, for ε ≈ 10−6,
this is not achieved until t ≈ 10. In view of the present analysis it is thus hardly
surprising that Tarr & Berg (1980) suggested that according to experimental data
(and contrary to the steadiness assumption) ‘. . . jet breakup during mass transfer may
be controlled by the concentration profile existing during the very early stages of jet
life, when the diffusion boundary layer is extremely thin.’

It has been observed (cf. the discussion at the conclusion of § 2) that, at sufficiently
long times (t & 10), the reference state becomes slowly varying insofar as the ele-
ments affecting the growth of perturbations are concerned. Indeed (see figure 2a), at
these times perturbations grow nearly exponentially. However, during the preceding
interval (0 < t . 10) perturbations have experienced a substantial but non-uniform
growth (depending on the respective wavenumbers). Consequently, even at t & 10, the
wavenumbers km corresponding to the instantaneously most amplified perturbations
still vary (figure 2b). There thus seems no way whereby the above initial-value stabil-
ity analysis could consistently be replaced by the standard eigenvalue approach (see
Berger 1988, and the footnote at the Introduction).

Another consequence of the initial lack of equilibrium between the solute concen-
trations at the various phases is the relative importance of solute mass transfer within
the gaseous phase. This is usually estimated (Hansen 1960; MacLeod & Radke 1994)
by the ratio Kp(Dg/D)1/2 (≈ 8.6 × 10−2 for the system illustrated, cf. Appendix B).
This assessment, which assumes an equilibrium ratio of the respective concentrations
within the gaseous and liquid phases, is inapplicable to the problem of the initially
clean jet on which we have focused. Rather, in this case, the ratio of the diffusive fluxes
is approximately [C∞ − C (0)

s (t)]/C (0)(0, t) × (Dg/D)1/2 which (figure 1(b)) is gradually
decreasing from a large initial (at t → 0+) value, only becoming O(1) at t ≈ 1 and
remaining at this order throughout the rest of the time interval considered.

In the present problem capillarity may give rise to instability through the Rayleigh
mechanism or the Marangoni effect induced by non-uniformity of surface tension.
The latter mechanism is analogous to that proposed by Pearson (1958) and Sernling
& Scriven (1959) for the onset of cellular convection. In both cases the driving force
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of instability is the lack of thermal or chemical equilibrium between the fluid and
adjacent medium resulting in temperature or concentration gradients across the jet
or fluid layer. Perturbative convection across these gradients perturbs the interfacial
temperature or concentration thereby generating a non-uniform surface tension and
accompanying surface tractions which may, depending on the gradient direction,
act to further enhance bulk fluid motion. Solute adsorption somewhat complicates
the chain of events in the present problem. Thus perturbation of surface-excess
concentration (and hence changes of surface tension) are only indirectly effected by
the radial velocity perturbation through the generation of a diffusive solute flux at
the bulk substrate.

It has been demonstrated (cf. figure 4) that the commonly assumed diffusion-control
approximation is inapplicable to the description of the system hexanol–water–air
(which is known to be of mixed-control type, Joos & Serrien 1989). Additional results
(not presented here) indicate that this approximation is inadequate even for systems
characterized by δl with a value an order of magnitude smaller than that of the above
(≈ 3.25). Indeed, the approach to the diffusion-control limit is expected to be rather
slow. Unless the initial solute distribution corresponds to a state of equilibrium, the
equilibrium limit δl → 0 will be non-uniform on an O(δ2

l ) time scale when diffusive
fluxes resulting from large initial concentration gradients are significant. Furthermore,
owing to the occurrence of ‘memory effects’ in the evolution equations, this initial
non-uniformity may have a global long-term effect for all δl > 0.

The authors are grateful to a referee who pointed out an error in the original
formulation of the solute mass balance at the jet surface. This research was supported
by the Israel Science Foundation administered by the Israel Academy of Sciences and
Humanities and by the fund for the promotion of research at the Technion.

Appendix A. Calculation of ζ(r, t)
The ‘modified’ vorticity perturbation is governed by (3.10)–(3.12) which in principle

are to be supplemented by specification of an initial distribution

ζ(r, t) = ζ0(r) at t = 0. (A 1)

The solution of this linear initial- and boundary-value problem may be represented
as the superposition of the solutions respectively corresponding to the above problem
with a homogeneous initial condition and with a homogeneous boundary condition
at r = 1. The latter contributes to the evolution equation a decaying forcing term
which is independent of both γ(t) and η(t) (cf. Frankel & Weihs 1987) and is therefore
omitted†, i.e. we select ζ0(r) = 0 in (A 1). We thus obtain

ζ(r, t) = −2k

∞∑
n=1

αnrJ1(αnr)

J0(αn)

×
∫ t

0

[(
∂σ

∂Γ

)(0)

γ(τ)− 2S
dη

dτ

]
exp[−S(k2 + α2

n)(t− τ)] dτ. (A 2)

† A similar question arises in the context of formulating the problem governing c0(x, t). Thus, the
replacement of (3.22c) by a non-homogeneous initial condition results likewise in the introduction
of a decaying forcing term into (3.28).
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This in conjunction with the relation∫ 1

0

rI1(kr)J1(αnr) dr = − (k2 + α2
n

)−1
αnI1(k)J0(αn) (A 3)

yields (3.15).

The limit S � 1:

We consider the case ε � S � 1 (cf. Appendix B) for k ∼ O(1). (A similar
calculation may be carried out to obtain ζ for larger values of k.) In the ‘outer’ limit
S → 0 when 1− r ∼ O(1), ζ vanishes. Define the inner variable 1− r = S1/2y to obtain
from (3.10)

∂ζ

∂t
∼ ∂2ζ

∂y2
+ S1/2 ∂ζ

∂y
+ O(S), (A 4)

which is supplemented by (3.12) and homogeneous initial (at t = 0) and matching
(for y →∞) conditions. Substituting the expansion

ζ(y, t) ∼ ζ0(y, t) + S1/2ζ1(y, t) + O(S),

we obtain

ζ0(y, t) =
ky

2π1/2

∫ t

0

[
1

S

(
∂σ

∂Γ

)(0)

γ − 2
dη

dτ

]
(t− τ)−3/2 exp

[
− y2

4(t− τ)
]

dτ, (A 5a)

ζ1(y, t) =

∫ t

0

∫ ∞
0

G(y, t, y0, t0)
∂ζ0

∂y0

dy0 dt0, (A 5b)

wherein G(y, t, y0, t0) is that appearing in (3.24b). Expanding I1(kr) into a Taylor
series in powers of y, substituting (A 5) and (3.24b) and neglecting exponentially
small terms, we obtain (3.16).

Appendix B. Kinetic data
In the following we estimate the order of magnitude of the requisite kinetic

parameters for a water jet of radius a = 0.1 cm moving in air at atmospheric pressure
and room temperature (25 ◦C). From their respective definitions, making use of the
values of the density and viscosity of water and the surface tension of clean water in
air, we readily obtain for the capillary time scale Tc ≈ 3.7×10−3 s (and the parameter
S ≈ 3.7× 10−3). Considering effects of solute mass transfer on jet stability, we focus
on the lower-molecular-weight alcohols which are significantly volatile and soluble
in water. A thorough tabulation of diffusion coefficients of organic compounds in
aqueous solutions (Johnson & Babb 1956) shows only a moderate spread of the
data for the diffusion coefficients of the lower alcohols about D ≈ 10−5 cm2 s−1. (The
accurate numerical value of D is of minor importance since throughout the derivation
the various parameters only involve D1/2.) We thus indeed have ε� 1. Furthermore
S/ε = µ/ρD, i.e. the Schmidt number ≈103 (cf. the comments preceding (3.26)).
Following the standard practice (Hansen 1960; Crank 1975), solute mass transfer
within the surrounding atmosphere is modelled by use of the mass-transfer coefficient
E in (2.4) and (2.5b). We estimate this coefficient via the penetration approximation (cf.
Bird, Stewart & Lightfoot 1960; Sherwood, Pigford & Wilke 1975) E ≈ (Dg/T )1/2.
For the above-mentioned organic compounds the diffusivity in air is (Lugg 1968)
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Dg ≈ 0.1 cm2 s−1. Taking as an average representative value T ≈ 10Tc one obtains
E ≈ 1.5 cm s−1.

Explicit results are presented in § 4 for a system satisfying the Langmuir–Hinshel-
wood kinetic relation (4.1) which at equilibrium reduces to the Langmuir isotherm.
Neglecting interaction phenomena (such as ‘cooperative adsorption’), the latter is the
simplest nonlinear isotherm which is widely used when significant surface-tension
variations occur (Chang & Franses 1995; Eastoe & Dalton 2000). Lin, McKeigue
& Maldarelli (1991) present experimental evidence that interaction phenomena only
become significant for octanol, hence adsorption of lower alcohols can adequately be
described by the Langmuir isotherm. Kinetic parameters characterizing this isotherm
obtained via analysis of surface-tension relaxation experiments are tabulated by
Chang & Franses (1995), Dukhin, Kretzschmar & Miller (1995) among others. The
data regarding Γm, the saturation surface-excess concentration, show a small scatter
for the lower alcohols and no definite trend in the variation with molecular weight,
Γm ≈ (6–9)×10−10 mole cm−2. Given that Γm is nearly constant for the various solutes,
their respective surface activities are essentially determined by βl which increases by
an approximately constant factor of 3–4 (cf. Hommelen 1959; Chang & Franses 1995)
with the addition of each CH2 group to the solute molecular chain. Data regarding
Kl , the adsorption-rate constant, are provided by Joos & Serrien (1989) for the normal
alcohols (from propanol to heptanol).

Results of the present stability analysis are illustrated making use of the in-
termediate values Γm ≈ 7× 10−10 mole cm−2, βl = 2.1 × 105 cm3 mole−1 and Kl =
1.6 × 10−2 cm s−1 appropriate to the approximate description of the hexanol–water–
air system. Making use of Henry’s law constant for this system at 25 ◦C (Yaws 1999)
and assuming ideal behaviour of the gaseous phase, we obtain the partition coefficient
Kp ≈ 8.6×10−4. From the solubility of hexanol in water at 25 ◦C (Yaws 1999) together
with the value of Kp we obtain the saturation value of C∞ ≈ 5.0× 10−8 mole cm−3.

At equilibrium the subsurface concentration for a given Γ (0) is inversely propor-
tional to the value of the parameter β. Thus, once Kp, the partition coefficient, has
been determined, βg (pertaining to adsorption from the surrounding atmosphere)
is readily obtained as βg = βl/Kp. The value of the rate constant Kg is estimated
by means of Eyring’s theory of absolute reaction rates. According to this theory
(cf. Glasstone, Laidler & Eyring 1941; Joos 1995), the rate constants Ki (i = l, g)
are proportional to the equilibrium constant between the activated complex and the
reactants (i.e. solute molecules within the substrate and active sites on the adsorbing
interface). Accordingly, Kg/Kl = K−1

p .
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